19 research outputs found

    Using Graph Theory to Derive Inequalities for the Bell Numbers

    Full text link
    The Bell numbers count the number of different ways to partition a set of nn elements while the graphical Bell numbers count the number of non-equivalent partitions of the vertex set of a graph into stable sets. This relation between graph theory and integer sequences has motivated us to study properties on the average number of colors in the non-equivalent colorings of a graph to discover new non trivial inequalities for the Bell numbers. Example are given to illustrate our approach

    House of Graphs: a database of interesting graphs

    Get PDF
    In this note we present House of Graphs (http://hog.grinvin.org) which is a new database of graphs. The key principle is to have a searchable database and offer -- next to complete lists of some graph classes -- also a list of special graphs that already turned out to be interesting and relevant in the study of graph theoretic problems or as counterexamples to conjectures. This list can be extended by users of the database.Comment: 8 pages; added a figur

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into n−αn-\alpha stars, each of size ⌈n−1n−α⌉\lceil \frac{n-1}{n-\alpha} \rceil or ⌊n−1n−α⌋\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Facet defining inequalities among graph invariants: The system GraPHedron

    Get PDF
    AbstractWe present a new computer system, called GraPHedron, which uses a polyhedral approach to help the user to discover optimal conjectures in graph theory. We define what should be optimal conjectures and propose a formal framework allowing to identify them. Here, graphs with n nodes are viewed as points in the Euclidian space, whose coordinates are the values of a set of graph invariants. To the convex hull of these points corresponds a finite set of linear inequalities. These inequalities computed for a few values of n can be possibly generalized automatically or interactively. They serve as conjectures which can be considered as optimal by geometrical arguments.We describe how the system works, and all optimal relations between the diameter and the number of edges of connected graphs are given, as an illustration. Other applications and results are mentioned, and the forms of the conjectures that can be currently obtained with GraPHedron are characterized
    corecore